java.lang.Object | ||||
↳ | android.support.v8.renderscript.BaseObj | |||
↳ | android.support.v8.renderscript.Script | |||
↳ | android.support.v8.renderscript.ScriptIntrinsic | |||
↳ | android.support.v8.renderscript.ScriptIntrinsicBLAS |
ScriptIntrinsicBLAS class provides high performance RenderScript APIs to BLAS. The BLAS (Basic Linear Algebra Subprograms) are routines that provide standard building blocks for performing basic vector and matrix operations. For detailed description of BLAS, please refer to http://www.netlib.org/blas/
Constants | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
int | CONJ_TRANSPOSE | ||||||||||
int | LEFT | ||||||||||
int | LOWER | ||||||||||
int | NON_UNIT | ||||||||||
int | NO_TRANSPOSE | ||||||||||
int | RIGHT | ||||||||||
int | TRANSPOSE | ||||||||||
int | UNIT | ||||||||||
int | UPPER |
Public Methods | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
8-bit GEMM-like operation for neural networks: C = A * Transpose(B)
Calculations are done in 1.10.21 fixed-point format for the final output,
just before there's a shift down to drop the fractional parts.
| |||||||||||
CGBMV performs one of the matrix-vector operations
y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y or y := alpha*A**H*x + beta*y
Details: http://www.netlib.org/lapack/explore-html/d0/d75/cgbmv_8f.html
Note: For a M*N matrix, the input Allocation should also be of size M*N (dimY = M, dimX = N),
but only the region M*(KL+KU+1) will be referenced.
| |||||||||||
CGEMM performs one of the matrix-matrix operations
C := alpha*op(A)*op(B) + beta*C where op(X) is one of op(X) = X or op(X) = X**T or op(X) = X**H
Details: http://www.netlib.org/lapack/explore-html/d6/d5b/cgemm_8f.html
| |||||||||||
CGEMV performs one of the matrix-vector operations
y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y or y := alpha*A**H*x + beta*y
Details: http://www.netlib.org/lapack/explore-html/d4/d8a/cgemv_8f.html
| |||||||||||
CGERC performs the rank 1 operation
A := alpha*x*y**H + A
Details: http://www.netlib.org/lapack/explore-html/dd/d84/cgerc_8f.html
| |||||||||||
CGERU performs the rank 1 operation
A := alpha*x*y**T + A
Details: http://www.netlib.org/lapack/explore-html/db/d5f/cgeru_8f.html
| |||||||||||
CHBMV performs the matrix-vector operation
y := alpha*A*x + beta*y
Details: http://www.netlib.org/lapack/explore-html/db/dc2/chbmv_8f.html
Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N),
but only the region N*(K+1) will be referenced.
| |||||||||||
CHEMM performs one of the matrix-matrix operations
C := alpha*A*B + beta*C or C := alpha*B*A + beta*C
Details: http://www.netlib.org/lapack/explore-html/d3/d66/chemm_8f.html
| |||||||||||
CHEMV performs the matrix-vector operation
y := alpha*A*x + beta*y
Details: http://www.netlib.org/lapack/explore-html/d7/d51/chemv_8f.html
| |||||||||||
CHER performs the rank 1 operation
A := alpha*x*x**H + A
Details: http://www.netlib.org/lapack/explore-html/d3/d6d/cher_8f.html
| |||||||||||
CHER2 performs the symmetric rank 2 operation
A := alpha*x*y**H + alpha*y*x**H + A
Details: http://www.netlib.org/lapack/explore-html/db/d87/cher2_8f.html
| |||||||||||
CHER2K performs one of the hermitian rank 2k operations
C := alpha*A*B**H + conjg( alpha )*B*A**H + beta*C or C := alpha*A**H*B + conjg( alpha )*B**H*A + beta*C
Details: http://www.netlib.org/lapack/explore-html/d1/d82/cher2k_8f.html
| |||||||||||
CHERK performs one of the hermitian rank k operations
C := alpha*A*A**H + beta*C or C := alpha*A**H*A + beta*C
Details: http://www.netlib.org/lapack/explore-html/d8/d52/cherk_8f.html
| |||||||||||
CHPMV performs the matrix-vector operation
y := alpha*A*x + beta*y
Details: http://www.netlib.org/lapack/explore-html/d2/d06/chpmv_8f.html
Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
The following subroutine can is an example showing how to convert a UPPER trianglar matrix
'a' to packed matrix 'b'.
| |||||||||||
CHPR performs the rank 1 operation
A := alpha*x*x**H + A
Details: http://www.netlib.org/lapack/explore-html/db/dcd/chpr_8f.html
Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
The following subroutine can is an example showing how to convert a UPPER trianglar matrix
'a' to packed matrix 'b'.
| |||||||||||
CHPR2 performs the symmetric rank 2 operation
A := alpha*x*y**H + alpha*y*x**H + A
Details: http://www.netlib.org/lapack/explore-html/d6/d44/chpr2_8f.html
Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
The following subroutine can is an example showing how to convert a UPPER trianglar matrix
'a' to packed matrix 'b'.
| |||||||||||
CSYMM performs one of the matrix-matrix operations
C := alpha*A*B + beta*C or C := alpha*B*A + beta*C
Details: http://www.netlib.org/lapack/explore-html/db/d59/csymm_8f.html
| |||||||||||
CSYR2K performs one of the symmetric rank 2k operations
C := alpha*A*B**T + alpha*B*A**T + beta*C or C := alpha*A**T*B + alpha*B**T*A + beta*C
Details: http://www.netlib.org/lapack/explore-html/de/d7e/csyr2k_8f.html
| |||||||||||
CSYRK performs one of the symmetric rank k operations
C := alpha*A*A**T + beta*C or C := alpha*A**T*A + beta*C
Details: http://www.netlib.org/lapack/explore-html/d3/d6a/csyrk_8f.html
| |||||||||||
CTBMV performs one of the matrix-vector operations
x := A*x or x := A**T*x or x := A**H*x
Details: http://www.netlib.org/lapack/explore-html/d3/dcd/ctbmv_8f.html
Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N),
but only the region N*(K+1) will be referenced.
| |||||||||||
CTBSV solves one of the systems of equations
A*x = b or A**T*x = b or A**H*x = b
Details: http://www.netlib.org/lapack/explore-html/d9/d5f/ctbsv_8f.html
Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N),
but only the region N*(K+1) will be referenced.
| |||||||||||
CTPMV performs one of the matrix-vector operations
x := A*x or x := A**T*x or x := A**H*x
Details: http://www.netlib.org/lapack/explore-html/d4/dbb/ctpmv_8f.html
Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
The following subroutine can is an example showing how to convert a UPPER trianglar matrix
'a' to packed matrix 'b'.
| |||||||||||
CTPSV solves one of the systems of equations
A*x = b or A**T*x = b or A**H*x = b
Details: http://www.netlib.org/lapack/explore-html/d8/d56/ctpsv_8f.html
Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
The following subroutine can is an example showing how to convert a UPPER trianglar matrix
'a' to packed matrix 'b'.
| |||||||||||
CTRMM performs one of the matrix-matrix operations
B := alpha*op(A)*B or B := alpha*B*op(A)
op(A) is one of op(A) = A or op(A) = A**T or op(A) = A**H
Details: http://www.netlib.org/lapack/explore-html/d4/d9b/ctrmm_8f.html
| |||||||||||
CTRMV performs one of the matrix-vector operations
x := A*x or x := A**T*x or x := A**H*x
Details: http://www.netlib.org/lapack/explore-html/df/d78/ctrmv_8f.html
| |||||||||||
CTRSM solves one of the matrix equations
op(A)*X := alpha*B or X*op(A) := alpha*B
op(A) is one of op(A) = A or op(A) = A**T or op(A) = A**H
Details: http://www.netlib.org/lapack/explore-html/de/d30/ctrsm_8f.html
| |||||||||||
CTRSV solves one of the systems of equations
A*x = b or A**T*x = b or A**H*x = b
Details: http://www.netlib.org/lapack/explore-html/d4/dc8/ctrsv_8f.html
| |||||||||||
DGBMV performs one of the matrix-vector operations
y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y
Details: http://www.netlib.org/lapack/explore-html/d2/d3f/dgbmv_8f.html
Note: For a M*N matrix, the input Allocation should also be of size M*N (dimY = M, dimX = N),
but only the region M*(KL+KU+1) will be referenced.
| |||||||||||
DGEMM performs one of the matrix-matrix operations
C := alpha*op(A)*op(B) + beta*C where op(X) is one of op(X) = X or op(X) = X**T
Details: http://www.netlib.org/lapack/explore-html/d7/d2b/dgemm_8f.html
| |||||||||||
DGEMV performs one of the matrix-vector operations
y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y
Details: http://www.netlib.org/lapack/explore-html/dc/da8/dgemv_8f.html
| |||||||||||
DGER performs the rank 1 operation
A := alpha*x*y**T + A
Details: http://www.netlib.org/lapack/explore-html/dc/da8/dger_8f.html
| |||||||||||
DSBMV performs the matrix-vector operation
y := alpha*A*x + beta*y
Details: http://www.netlib.org/lapack/explore-html/d8/d1e/dsbmv_8f.html
Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N),
but only the region N*(K+1) will be referenced.
| |||||||||||
DSPMV performs the matrix-vector operation
y := alpha*A*x + beta*y
Details: http://www.netlib.org/lapack/explore-html/d4/d85/dspmv_8f.html
Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
The following subroutine can is an example showing how to convert a UPPER trianglar matrix
'a' to packed matrix 'b'.
| |||||||||||
DSPR performs the rank 1 operation
A := alpha*x*x**T + A
Details: http://www.netlib.org/lapack/explore-html/dd/dba/dspr_8f.html
Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
The following subroutine can is an example showing how to convert a UPPER trianglar matrix
'a' to packed matrix 'b'.
| |||||||||||
DSPR2 performs the symmetric rank 2 operation
A := alpha*x*y**T + alpha*y*x**T + A
Details: http://www.netlib.org/lapack/explore-html/dd/d9e/dspr2_8f.html
Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
The following subroutine can is an example showing how to convert a UPPER trianglar matrix
'a' to packed matrix 'b'.
| |||||||||||
DSYMM performs one of the matrix-matrix operations
C := alpha*A*B + beta*C or C := alpha*B*A + beta*C
Details: http://www.netlib.org/lapack/explore-html/d8/db0/dsymm_8f.html
| |||||||||||
DSYMV performs the matrix-vector operation
y := alpha*A*x + beta*y
Details: http://www.netlib.org/lapack/explore-html/d8/dbe/dsymv_8f.html
| |||||||||||
DSYR performs the rank 1 operation
A := alpha*x*x**T + A
Details: http://www.netlib.org/lapack/explore-html/d3/d60/dsyr_8f.html
| |||||||||||
DSYR2 performs the symmetric rank 2 operation
A := alpha*x*y**T + alpha*y*x**T + A
Details: http://www.netlib.org/lapack/explore-html/de/d41/dsyr2_8f.html
| |||||||||||
DSYR2K performs one of the symmetric rank 2k operations
C := alpha*A*B**T + alpha*B*A**T + beta*C or C := alpha*A**T*B + alpha*B**T*A + beta*C
Details: http://www.netlib.org/lapack/explore-html/d1/dec/dsyr2k_8f.html
| |||||||||||
DSYRK performs one of the symmetric rank k operations
C := alpha*A*A**T + beta*C or C := alpha*A**T*A + beta*C
Details: http://www.netlib.org/lapack/explore-html/dc/d05/dsyrk_8f.html
| |||||||||||
DTBMV performs one of the matrix-vector operations
x := A*x or x := A**T*x
Details: http://www.netlib.org/lapack/explore-html/df/d29/dtbmv_8f.html
Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N),
but only the region N*(K+1) will be referenced.
| |||||||||||
DTBSV solves one of the systems of equations
A*x = b or A**T*x = b
Details: http://www.netlib.org/lapack/explore-html/d4/dcf/dtbsv_8f.html
Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N),
but only the region N*(K+1) will be referenced.
| |||||||||||
DTPMV performs one of the matrix-vector operations
x := A*x or x := A**T*x
Details: http://www.netlib.org/lapack/explore-html/dc/dcd/dtpmv_8f.html
Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
The following subroutine can is an example showing how to convert a UPPER trianglar matrix
'a' to packed matrix 'b'.
| |||||||||||
DTPSV solves one of the systems of equations
A*x = b or A**T*x = b
Details: http://www.netlib.org/lapack/explore-html/d9/d84/dtpsv_8f.html
Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
The following subroutine can is an example showing how to convert a UPPER trianglar matrix
'a' to packed matrix 'b'.
| |||||||||||
DTRMM performs one of the matrix-matrix operations
B := alpha*op(A)*B or B := alpha*B*op(A)
op(A) is one of op(A) = A or op(A) = A**T
Details: http://www.netlib.org/lapack/explore-html/dd/d19/dtrmm_8f.html
| |||||||||||
DTRMV performs one of the matrix-vector operations
x := A*x or x := A**T*x
Details: http://www.netlib.org/lapack/explore-html/dc/d7e/dtrmv_8f.html
| |||||||||||
DTRSM solves one of the matrix equations
op(A)*X := alpha*B or X*op(A) := alpha*B
op(A) is one of op(A) = A or op(A) = A**T
Details: http://www.netlib.org/lapack/explore-html/de/da7/dtrsm_8f.html
| |||||||||||
DTRSV solves one of the systems of equations
A*x = b or A**T*x = b
Details: http://www.netlib.org/lapack/explore-html/d6/d96/dtrsv_8f.html
| |||||||||||
SGBMV performs one of the matrix-vector operations
y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y
Details: http://www.netlib.org/lapack/explore-html/d6/d46/sgbmv_8f.html
Note: For a M*N matrix, the input Allocation should also be of size M*N (dimY = M, dimX = N),
but only the region M*(KL+KU+1) will be referenced.
| |||||||||||
SGEMM performs one of the matrix-matrix operations
C := alpha*op(A)*op(B) + beta*C where op(X) is one of op(X) = X or op(X) = X**T
Details: http://www.netlib.org/lapack/explore-html/d4/de2/sgemm_8f.html
| |||||||||||
SGEMV performs one of the matrix-vector operations
y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y
Details: http://www.netlib.org/lapack/explore-html/db/d58/sgemv_8f.html
| |||||||||||
SGER performs the rank 1 operation
A := alpha*x*y**T + A
Details: http://www.netlib.org/lapack/explore-html/db/d5c/sger_8f.html
| |||||||||||
SSBMV performs the matrix-vector operation
y := alpha*A*x + beta*y
Details: http://www.netlib.org/lapack/explore-html/d3/da1/ssbmv_8f.html
Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N),
but only the region N*(K+1) will be referenced.
| |||||||||||
SSPMV performs the matrix-vector operation
y := alpha*A*x + beta*y
Details: http://www.netlib.org/lapack/explore-html/d8/d68/sspmv_8f.html
Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
The following subroutine can is an example showing how to convert a UPPER trianglar matrix
'a' to packed matrix 'b'.
| |||||||||||
SSPR performs the rank 1 operation
A := alpha*x*x**T + A
Details: http://www.netlib.org/lapack/explore-html/d2/d9b/sspr_8f.html
Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
The following subroutine can is an example showing how to convert a UPPER trianglar matrix
'a' to packed matrix 'b'.
| |||||||||||
SSPR2 performs the symmetric rank 2 operation
A := alpha*x*y**T + alpha*y*x**T + A
Details: http://www.netlib.org/lapack/explore-html/db/d3e/sspr2_8f.html
Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
The following subroutine can is an example showing how to convert a UPPER trianglar matrix
'a' to packed matrix 'b'.
| |||||||||||
SSYMM performs one of the matrix-matrix operations
C := alpha*A*B + beta*C or C := alpha*B*A + beta*C
Details: http://www.netlib.org/lapack/explore-html/d7/d42/ssymm_8f.html
| |||||||||||
SSYMV performs the matrix-vector operation
y := alpha*A*x + beta*y
Details: http://www.netlib.org/lapack/explore-html/d2/d94/ssymv_8f.html
| |||||||||||
SSYR performs the rank 1 operation
A := alpha*x*x**T + A
Details: http://www.netlib.org/lapack/explore-html/d6/dac/ssyr_8f.html
| |||||||||||
SSYR2 performs the symmetric rank 2 operation
A := alpha*x*y**T + alpha*y*x**T + A
Details: http://www.netlib.org/lapack/explore-html/db/d99/ssyr2_8f.html
| |||||||||||
SSYR2K performs one of the symmetric rank 2k operations
C := alpha*A*B**T + alpha*B*A**T + beta*C or C := alpha*A**T*B + alpha*B**T*A + beta*C
Details: http://www.netlib.org/lapack/explore-html/df/d3d/ssyr2k_8f.html
| |||||||||||
SSYRK performs one of the symmetric rank k operations
C := alpha*A*A**T + beta*C or C := alpha*A**T*A + beta*C
Details: http://www.netlib.org/lapack/explore-html/d0/d40/ssyrk_8f.html
| |||||||||||
STBMV performs one of the matrix-vector operations
x := A*x or x := A**T*x
Details: http://www.netlib.org/lapack/explore-html/d6/d7d/stbmv_8f.html
Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N),
but only the region N*(K+1) will be referenced.
| |||||||||||
STBSV solves one of the systems of equations
A*x = b or A**T*x = b
Details: http://www.netlib.org/lapack/explore-html/d0/d1f/stbsv_8f.html
Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N),
but only the region N*(K+1) will be referenced.
| |||||||||||
STPMV performs one of the matrix-vector operations
x := A*x or x := A**T*x
Details: http://www.netlib.org/lapack/explore-html/db/db1/stpmv_8f.html
Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
The following subroutine can is an example showing how to convert a UPPER trianglar matrix
'a' to packed matrix 'b'.
| |||||||||||
STPSV solves one of the systems of equations
A*x = b or A**T*x = b
Details: http://www.netlib.org/lapack/explore-html/d0/d7c/stpsv_8f.html
Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
The following subroutine can is an example showing how to convert a UPPER trianglar matrix
'a' to packed matrix 'b'.
| |||||||||||
STRMM performs one of the matrix-matrix operations
B := alpha*op(A)*B or B := alpha*B*op(A)
op(A) is one of op(A) = A or op(A) = A**T
Details: http://www.netlib.org/lapack/explore-html/df/d01/strmm_8f.html
| |||||||||||
STRMV performs one of the matrix-vector operations
x := A*x or x := A**T*x
Details: http://www.netlib.org/lapack/explore-html/de/d45/strmv_8f.html
| |||||||||||
STRSM solves one of the matrix equations
op(A)*X := alpha*B or X*op(A) := alpha*B
op(A) is one of op(A) = A or op(A) = A**T
Details: http://www.netlib.org/lapack/explore-html/d2/d8b/strsm_8f.html
| |||||||||||
STRSV solves one of the systems of equations
A*x = b or A**T*x = b
Details: http://www.netlib.org/lapack/explore-html/d0/d2a/strsv_8f.html
| |||||||||||
ZGBMV performs one of the matrix-vector operations
y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y or y := alpha*A**H*x + beta*y
Details: http://www.netlib.org/lapack/explore-html/d9/d46/zgbmv_8f.html
Note: For a M*N matrix, the input Allocation should also be of size M*N (dimY = M, dimX = N),
but only the region M*(KL+KU+1) will be referenced.
| |||||||||||
ZGEMM performs one of the matrix-matrix operations
C := alpha*op(A)*op(B) + beta*C where op(X) is one of op(X) = X or op(X) = X**T or op(X) = X**H
Details: http://www.netlib.org/lapack/explore-html/d7/d76/zgemm_8f.html
| |||||||||||
ZGEMV performs one of the matrix-vector operations
y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y or y := alpha*A**H*x + beta*y
Details: http://www.netlib.org/lapack/explore-html/db/d40/zgemv_8f.html
| |||||||||||
ZGERC performs the rank 1 operation
A := alpha*x*y**H + A
Details: http://www.netlib.org/lapack/explore-html/d3/dad/zgerc_8f.html
| |||||||||||
ZGERU performs the rank 1 operation
A := alpha*x*y**T + A
Details: http://www.netlib.org/lapack/explore-html/d7/d12/zgeru_8f.html
| |||||||||||
ZHBMV performs the matrix-vector operation
y := alpha*A*x + beta*y
Details: http://www.netlib.org/lapack/explore-html/d3/d1a/zhbmv_8f.html
Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N),
but only the region N*(K+1) will be referenced.
| |||||||||||
ZHEMM performs one of the matrix-matrix operations
C := alpha*A*B + beta*C or C := alpha*B*A + beta*C
Details: http://www.netlib.org/lapack/explore-html/d6/d3e/zhemm_8f.html
| |||||||||||
ZHEMV performs the matrix-vector operation
y := alpha*A*x + beta*y
Details: http://www.netlib.org/lapack/explore-html/d0/ddd/zhemv_8f.html
| |||||||||||
ZHER performs the rank 1 operation
A := alpha*x*x**H + A
Details: http://www.netlib.org/lapack/explore-html/de/d0e/zher_8f.html
| |||||||||||
ZHER2 performs the symmetric rank 2 operation
A := alpha*x*y**H + alpha*y*x**H + A
Details: http://www.netlib.org/lapack/explore-html/da/d8a/zher2_8f.html
| |||||||||||
ZHER2K performs one of the hermitian rank 2k operations
C := alpha*A*B**H + conjg( alpha )*B*A**H + beta*C or C := alpha*A**H*B + conjg( alpha )*B**H*A + beta*C
Details: http://www.netlib.org/lapack/explore-html/d7/dfa/zher2k_8f.html
| |||||||||||
ZHERK performs one of the hermitian rank k operations
C := alpha*A*A**H + beta*C or C := alpha*A**H*A + beta*C
Details: http://www.netlib.org/lapack/explore-html/d1/db1/zherk_8f.html
| |||||||||||
ZHPMV performs the matrix-vector operation
y := alpha*A*x + beta*y
Details: http://www.netlib.org/lapack/explore-html/d0/d60/zhpmv_8f.html
Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
The following subroutine can is an example showing how to convert a UPPER trianglar matrix
'a' to packed matrix 'b'.
| |||||||||||
ZHPR performs the rank 1 operation
A := alpha*x*x**H + A
Details: http://www.netlib.org/lapack/explore-html/de/de1/zhpr_8f.html
Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
The following subroutine can is an example showing how to convert a UPPER trianglar matrix
'a' to packed matrix 'b'.
| |||||||||||
ZHPR2 performs the symmetric rank 2 operation
A := alpha*x*y**H + alpha*y*x**H + A
Details: http://www.netlib.org/lapack/explore-html/d5/d52/zhpr2_8f.html
Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
The following subroutine can is an example showing how to convert a UPPER trianglar matrix
'a' to packed matrix 'b'.
| |||||||||||
ZSYMM performs one of the matrix-matrix operations
C := alpha*A*B + beta*C or C := alpha*B*A + beta*C
Details: http://www.netlib.org/lapack/explore-html/df/d51/zsymm_8f.html
| |||||||||||
ZSYR2K performs one of the symmetric rank 2k operations
C := alpha*A*B**T + alpha*B*A**T + beta*C or C := alpha*A**T*B + alpha*B**T*A + beta*C
Details: http://www.netlib.org/lapack/explore-html/df/d20/zsyr2k_8f.html
| |||||||||||
ZSYRK performs one of the symmetric rank k operations
C := alpha*A*A**T + beta*C or C := alpha*A**T*A + beta*C
Details: http://www.netlib.org/lapack/explore-html/de/d54/zsyrk_8f.html
| |||||||||||
ZTBMV performs one of the matrix-vector operations
x := A*x or x := A**T*x or x := A**H*x
Details: http://www.netlib.org/lapack/explore-html/d3/d39/ztbmv_8f.html
Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N),
but only the region N*(K+1) will be referenced.
| |||||||||||
ZTBSV solves one of the systems of equations
A*x = b or A**T*x = b or A**H*x = b
Details: http://www.netlib.org/lapack/explore-html/d4/d5a/ztbsv_8f.html
Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N),
but only the region N*(K+1) will be referenced.
| |||||||||||
ZTPMV performs one of the matrix-vector operations
x := A*x or x := A**T*x or x := A**H*x
Details: http://www.netlib.org/lapack/explore-html/d2/d9e/ztpmv_8f.html
Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
The following subroutine can is an example showing how to convert a UPPER trianglar matrix
'a' to packed matrix 'b'.
| |||||||||||
ZTPSV solves one of the systems of equations
A*x = b or A**T*x = b or A**H*x = b
Details: http://www.netlib.org/lapack/explore-html/da/d57/ztpsv_8f.html
Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2,
The following subroutine can is an example showing how to convert a UPPER trianglar matrix
'a' to packed matrix 'b'.
| |||||||||||
ZTRMM performs one of the matrix-matrix operations
B := alpha*op(A)*B or B := alpha*B*op(A)
op(A) is one of op(A) = A or op(A) = A**T or op(A) = A**H
Details: http://www.netlib.org/lapack/explore-html/d8/de1/ztrmm_8f.html
| |||||||||||
ZTRMV performs one of the matrix-vector operations
x := A*x or x := A**T*x or x := A**H*x
Details: http://www.netlib.org/lapack/explore-html/d0/dd1/ztrmv_8f.html
| |||||||||||
ZTRSM solves one of the matrix equations
op(A)*X := alpha*B or X*op(A) := alpha*B
op(A) is one of op(A) = A or op(A) = A**T or op(A) = A**H
Details: http://www.netlib.org/lapack/explore-html/d1/d39/ztrsm_8f.html
| |||||||||||
ZTRSV solves one of the systems of equations
A*x = b or A**T*x = b or A**H*x = b
Details: http://www.netlib.org/lapack/explore-html/d1/d2f/ztrsv_8f.html
| |||||||||||
Create an intrinsic to access BLAS subroutines.
|
[Expand]
Inherited Methods | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
From class
android.support.v8.renderscript.Script
| |||||||||||
From class
android.support.v8.renderscript.BaseObj
| |||||||||||
From class
java.lang.Object
|
8-bit GEMM-like operation for neural networks: C = A * Transpose(B) Calculations are done in 1.10.21 fixed-point format for the final output, just before there's a shift down to drop the fractional parts. The output values are gated to 0 to 255 to fit in a byte, but the 10-bit format gives some headroom to avoid wrapping around on small overflows.
A | The input allocation contains matrix A, supported elements type U8(RenderScript) . |
---|---|
a_offset | The offset for all values in matrix A, e.g A[i,j] = A[i,j] - a_offset. Value should be from 0 to 255. |
B | The input allocation contains matrix B, supported elements type U8(RenderScript) . |
b_offset | The offset for all values in matrix B, e.g B[i,j] = B[i,j] - b_offset. Value should be from 0 to 255. |
C | The input allocation contains matrix C, supported elements type U8(RenderScript) . |
c_offset | The offset for all values in matrix C. |
c_mult | The multiplier for all values in matrix C, e.g C[i,j] = (C[i,j] + c_offset) * c_mult. |
CGBMV performs one of the matrix-vector operations y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y or y := alpha*A**H*x + beta*y Details: http://www.netlib.org/lapack/explore-html/d0/d75/cgbmv_8f.html Note: For a M*N matrix, the input Allocation should also be of size M*N (dimY = M, dimX = N), but only the region M*(KL+KU+1) will be referenced. The following subroutine can is an example showing how to convert the original matrix 'a' to row-based band matrix 'b'. for i in range(0, m): for j in range(max(0, i-kl), min(i+ku+1, n)): b[i, j-i+kl] = a[i, j]
TransA | The type of transpose applied to matrix A. |
---|---|
KL | The number of sub-diagonals of the matrix A. |
KU | The number of super-diagonals of the matrix A. |
alpha | The scalar alpha. |
A | The input allocation contains the band matrix A, supported elements type F32_2(RenderScript) . |
X | The input allocation contains vector x, supported elements type F32_2(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
beta | The scalar beta. |
Y | The input allocation contains vector y, supported elements type F32_2(RenderScript) . |
incY | The increment for the elements of vector y, must be larger than zero. |
CGEMM performs one of the matrix-matrix operations C := alpha*op(A)*op(B) + beta*C where op(X) is one of op(X) = X or op(X) = X**T or op(X) = X**H Details: http://www.netlib.org/lapack/explore-html/d6/d5b/cgemm_8f.html
TransA | The type of transpose applied to matrix A. |
---|---|
TransB | The type of transpose applied to matrix B. |
alpha | The scalar alpha. |
A | The input allocation contains matrix A, supported elements type F32_2(RenderScript) . |
B | The input allocation contains matrix B, supported elements type F32_2(RenderScript) . |
beta | The scalar beta. |
C | The input allocation contains matrix C, supported elements type F32_2(RenderScript) .
|
CGEMV performs one of the matrix-vector operations y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y or y := alpha*A**H*x + beta*y Details: http://www.netlib.org/lapack/explore-html/d4/d8a/cgemv_8f.html
TransA | The type of transpose applied to matrix A. |
---|---|
alpha | The scalar alpha. |
A | The input allocation contains matrix A, supported elements type F32_2(RenderScript) . |
X | The input allocation contains vector x, supported elements type F32_2(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
beta | The scalar beta. |
Y | The input allocation contains vector y, supported elements type F32_2(RenderScript) . |
incY | The increment for the elements of vector y, must be larger than zero. |
CGERC performs the rank 1 operation A := alpha*x*y**H + A Details: http://www.netlib.org/lapack/explore-html/dd/d84/cgerc_8f.html
alpha | The scalar alpha. |
---|---|
X | The input allocation contains vector x, supported elements type F32_2(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
Y | The input allocation contains vector y, supported elements type F32_2(RenderScript) . |
incY | The increment for the elements of vector y, must be larger than zero. |
A | The input allocation contains matrix A, supported elements type F32_2(RenderScript) .
|
CGERU performs the rank 1 operation A := alpha*x*y**T + A Details: http://www.netlib.org/lapack/explore-html/db/d5f/cgeru_8f.html
alpha | The scalar alpha. |
---|---|
X | The input allocation contains vector x, supported elements type F32_2(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
Y | The input allocation contains vector y, supported elements type F32_2(RenderScript) . |
incY | The increment for the elements of vector y, must be larger than zero. |
A | The input allocation contains matrix A, supported elements type F32_2(RenderScript) .
|
CHBMV performs the matrix-vector operation y := alpha*A*x + beta*y Details: http://www.netlib.org/lapack/explore-html/db/dc2/chbmv_8f.html Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), but only the region N*(K+1) will be referenced. The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'. for i in range(0, n): for j in range(i, min(i+k+1, n)): b[i, j-i] = a[i, j]
Uplo | Specifies whether the upper or lower triangular part of the band matrix A is being supplied. |
---|---|
K | The number of off-diagonals of the matrix A |
alpha | The scalar alpha. |
A | The input allocation contains matrix A, supported elements type F32_2(RenderScript) . |
X | The input allocation contains vector x, supported elements type F32_2(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
beta | The scalar beta. |
Y | The input allocation contains vector y, supported elements type F32_2(RenderScript) . |
incY | The increment for the elements of vector y, must be larger than zero. |
CHEMM performs one of the matrix-matrix operations C := alpha*A*B + beta*C or C := alpha*B*A + beta*C Details: http://www.netlib.org/lapack/explore-html/d3/d66/chemm_8f.html
Side | Specifies whether the symmetric matrix A appears on the left or right. |
---|---|
Uplo | Specifies whether the upper or lower triangular part is to be referenced. |
alpha | The scalar alpha. |
A | The input allocation contains matrix A, supported elements type F32_2(RenderScript) . |
B | The input allocation contains matrix B, supported elements type F32_2(RenderScript) . |
beta | The scalar beta. |
C | The input allocation contains matrix C, supported elements type F32_2(RenderScript) .
|
CHEMV performs the matrix-vector operation y := alpha*A*x + beta*y Details: http://www.netlib.org/lapack/explore-html/d7/d51/chemv_8f.html
Uplo | Specifies whether the upper or lower triangular part is to be referenced. |
---|---|
alpha | The scalar alpha. |
A | The input allocation contains matrix A, supported elements type F32_2(RenderScript) . |
X | The input allocation contains vector x, supported elements type F32_2(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
beta | The scalar beta. |
Y | The input allocation contains vector y, supported elements type F32_2(RenderScript) . |
incY | The increment for the elements of vector y, must be larger than zero. |
CHER performs the rank 1 operation A := alpha*x*x**H + A Details: http://www.netlib.org/lapack/explore-html/d3/d6d/cher_8f.html
Uplo | Specifies whether the upper or lower triangular part is to be referenced. |
---|---|
alpha | The scalar alpha. |
X | The input allocation contains vector x, supported elements type F32_2(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
A | The input allocation contains matrix A, supported elements type F32_2(RenderScript) .
|
CHER2 performs the symmetric rank 2 operation A := alpha*x*y**H + alpha*y*x**H + A Details: http://www.netlib.org/lapack/explore-html/db/d87/cher2_8f.html
Uplo | Specifies whether the upper or lower triangular part is to be referenced. |
---|---|
alpha | The scalar alpha. |
X | The input allocation contains vector x, supported elements type F32_2(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
Y | The input allocation contains vector y, supported elements type F32_2(RenderScript) . |
incY | The increment for the elements of vector y, must be larger than zero. |
A | The input allocation contains matrix A, supported elements type F32_2(RenderScript) .
|
CHER2K performs one of the hermitian rank 2k operations C := alpha*A*B**H + conjg( alpha )*B*A**H + beta*C or C := alpha*A**H*B + conjg( alpha )*B**H*A + beta*C Details: http://www.netlib.org/lapack/explore-html/d1/d82/cher2k_8f.html
Uplo | Specifies whether the upper or lower triangular part of C is to be referenced. |
---|---|
Trans | The type of transpose applied to the operation. |
alpha | The scalar alpha. |
A | The input allocation contains matrix A, supported elements type F32_2(RenderScript) . |
B | The input allocation contains matrix B, supported elements type F32_2(RenderScript) . |
beta | The scalar beta. |
C | The input allocation contains matrix C, supported elements type F32_2(RenderScript) .
|
CHERK performs one of the hermitian rank k operations C := alpha*A*A**H + beta*C or C := alpha*A**H*A + beta*C Details: http://www.netlib.org/lapack/explore-html/d8/d52/cherk_8f.html
Uplo | Specifies whether the upper or lower triangular part of C is to be referenced. |
---|---|
Trans | The type of transpose applied to the operation. |
alpha | The scalar alpha. |
A | The input allocation contains matrix A, supported elements type F32_2(RenderScript) . |
beta | The scalar beta. |
C | The input allocation contains matrix C, supported elements type F32_2(RenderScript) .
|
CHPMV performs the matrix-vector operation y := alpha*A*x + beta*y Details: http://www.netlib.org/lapack/explore-html/d2/d06/chpmv_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'. k = 0 for i in range(0, n): for j in range(i, n): b[k++] = a[i, j]
Uplo | Specifies whether the upper or lower triangular part of the matrix A is supplied in packed form. |
---|---|
alpha | The scalar alpha. |
Ap | The input allocation contains matrix A, supported elements type F32_2(RenderScript) . |
X | The input allocation contains vector x, supported elements type F32_2(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
beta | The scalar beta. |
Y | The input allocation contains vector y, supported elements type F32_2(RenderScript) . |
incY | The increment for the elements of vector y, must be larger than zero. |
CHPR performs the rank 1 operation A := alpha*x*x**H + A Details: http://www.netlib.org/lapack/explore-html/db/dcd/chpr_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'. k = 0 for i in range(0, n): for j in range(i, n): b[k++] = a[i, j]
Uplo | Specifies whether the upper or lower triangular part is to be supplied in the packed form. |
---|---|
alpha | The scalar alpha. |
X | The input allocation contains vector x, supported elements type F32_2(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
Ap | The input allocation contains matrix A, supported elements type F32_2(RenderScript) .
|
CHPR2 performs the symmetric rank 2 operation A := alpha*x*y**H + alpha*y*x**H + A Details: http://www.netlib.org/lapack/explore-html/d6/d44/chpr2_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'. k = 0 for i in range(0, n): for j in range(i, n): b[k++] = a[i, j]
Uplo | Specifies whether the upper or lower triangular part is to be supplied in the packed form. |
---|---|
alpha | The scalar alpha. |
X | The input allocation contains vector x, supported elements type F32_2(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
Y | The input allocation contains vector y, supported elements type F32_2(RenderScript) . |
incY | The increment for the elements of vector y, must be larger than zero. |
Ap | The input allocation contains matrix A, supported elements type F32_2(RenderScript) .
|
CSYMM performs one of the matrix-matrix operations C := alpha*A*B + beta*C or C := alpha*B*A + beta*C Details: http://www.netlib.org/lapack/explore-html/db/d59/csymm_8f.html
Side | Specifies whether the symmetric matrix A appears on the left or right. |
---|---|
Uplo | Specifies whether the upper or lower triangular part is to be referenced. |
alpha | The scalar alpha. |
A | The input allocation contains matrix A, supported elements type F32_2(RenderScript) . |
B | The input allocation contains matrix B, supported elements type F32_2(RenderScript) . |
beta | The scalar beta. |
C | The input allocation contains matrix C, supported elements type F32_2(RenderScript) .
|
CSYR2K performs one of the symmetric rank 2k operations C := alpha*A*B**T + alpha*B*A**T + beta*C or C := alpha*A**T*B + alpha*B**T*A + beta*C Details: http://www.netlib.org/lapack/explore-html/de/d7e/csyr2k_8f.html
Uplo | Specifies whether the upper or lower triangular part of C is to be referenced. |
---|---|
Trans | The type of transpose applied to the operation. |
alpha | The scalar alpha. |
A | The input allocation contains matrix A, supported elements type F32_2(RenderScript) . |
B | The input allocation contains matrix B, supported elements type F32_2(RenderScript) . |
beta | The scalar beta. |
C | The input allocation contains matrix C, supported elements type F32_2(RenderScript) .
|
CSYRK performs one of the symmetric rank k operations C := alpha*A*A**T + beta*C or C := alpha*A**T*A + beta*C Details: http://www.netlib.org/lapack/explore-html/d3/d6a/csyrk_8f.html
Uplo | Specifies whether the upper or lower triangular part of C is to be referenced. |
---|---|
Trans | The type of transpose applied to the operation. |
alpha | The scalar alpha. |
A | The input allocation contains matrix A, supported elements type F32_2(RenderScript) . |
beta | The scalar beta. |
C | The input allocation contains matrix C, supported elements type F32_2(RenderScript) .
|
CTBMV performs one of the matrix-vector operations x := A*x or x := A**T*x or x := A**H*x Details: http://www.netlib.org/lapack/explore-html/d3/dcd/ctbmv_8f.html Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), but only the region N*(K+1) will be referenced. The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'. for i in range(0, n): for j in range(i, min(i+k+1, n)): b[i, j-i] = a[i, j]
Uplo | Specifies whether the matrix is an upper or lower triangular matrix. |
---|---|
TransA | The type of transpose applied to matrix A. |
Diag | Specifies whether or not A is unit triangular. |
K | The number of off-diagonals of the matrix A |
A | The input allocation contains matrix A, supported elements type F32_2(RenderScript) . |
X | The input allocation contains vector x, supported elements type F32_2(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
CTBSV solves one of the systems of equations A*x = b or A**T*x = b or A**H*x = b Details: http://www.netlib.org/lapack/explore-html/d9/d5f/ctbsv_8f.html Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), but only the region N*(K+1) will be referenced. The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'. for i in range(0, n): for j in range(i, min(i+k+1, n)): b[i, j-i] = a[i, j]
Uplo | Specifies whether the matrix is an upper or lower triangular matrix. |
---|---|
TransA | The type of transpose applied to matrix A. |
Diag | Specifies whether or not A is unit triangular. |
K | The number of off-diagonals of the matrix A |
A | The input allocation contains matrix A, supported elements type F32_2(RenderScript) . |
X | The input allocation contains vector x, supported elements type F32_2(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
CTPMV performs one of the matrix-vector operations x := A*x or x := A**T*x or x := A**H*x Details: http://www.netlib.org/lapack/explore-html/d4/dbb/ctpmv_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'. k = 0 for i in range(0, n): for j in range(i, n): b[k++] = a[i, j]
Uplo | Specifies whether the matrix is an upper or lower triangular matrix. |
---|---|
TransA | The type of transpose applied to matrix A. |
Diag | Specifies whether or not A is unit triangular. |
Ap | The input allocation contains packed matrix A, supported elements type F32_2(RenderScript) . |
X | The input allocation contains vector x, supported elements type F32_2(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
CTPSV solves one of the systems of equations A*x = b or A**T*x = b or A**H*x = b Details: http://www.netlib.org/lapack/explore-html/d8/d56/ctpsv_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'. k = 0 for i in range(0, n): for j in range(i, n): b[k++] = a[i, j]
Uplo | Specifies whether the matrix is an upper or lower triangular matrix. |
---|---|
TransA | The type of transpose applied to matrix A. |
Diag | Specifies whether or not A is unit triangular. |
Ap | The input allocation contains packed matrix A, supported elements type F32_2(RenderScript) . |
X | The input allocation contains vector x, supported elements type F32_2(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
CTRMM performs one of the matrix-matrix operations B := alpha*op(A)*B or B := alpha*B*op(A) op(A) is one of op(A) = A or op(A) = A**T or op(A) = A**H Details: http://www.netlib.org/lapack/explore-html/d4/d9b/ctrmm_8f.html
Side | Specifies whether the symmetric matrix A appears on the left or right. |
---|---|
Uplo | Specifies whether matrix A is upper or lower triangular. |
TransA | The type of transpose applied to matrix A. |
Diag | Specifies whether or not A is unit triangular. |
alpha | The scalar alpha. |
A | The input allocation contains matrix A, supported elements type F32_2(RenderScript) . |
B | The input allocation contains matrix B, supported elements type F32_2(RenderScript) .
|
CTRMV performs one of the matrix-vector operations x := A*x or x := A**T*x or x := A**H*x Details: http://www.netlib.org/lapack/explore-html/df/d78/ctrmv_8f.html
Uplo | Specifies whether the matrix is an upper or lower triangular matrix. |
---|---|
TransA | The type of transpose applied to matrix A. |
Diag | Specifies whether or not A is unit triangular. |
A | The input allocation contains matrix A, supported elements type F32_2(RenderScript) . |
X | The input allocation contains vector x, supported elements type F32_2(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
CTRSM solves one of the matrix equations op(A)*X := alpha*B or X*op(A) := alpha*B op(A) is one of op(A) = A or op(A) = A**T or op(A) = A**H Details: http://www.netlib.org/lapack/explore-html/de/d30/ctrsm_8f.html
Side | Specifies whether the symmetric matrix A appears on the left or right. |
---|---|
Uplo | Specifies whether matrix A is upper or lower triangular. |
TransA | The type of transpose applied to matrix A. |
Diag | Specifies whether or not A is unit triangular. |
alpha | The scalar alpha. |
A | The input allocation contains matrix A, supported elements type F32_2(RenderScript) . |
B | The input allocation contains matrix B, supported elements type F32_2(RenderScript) .
|
CTRSV solves one of the systems of equations A*x = b or A**T*x = b or A**H*x = b Details: http://www.netlib.org/lapack/explore-html/d4/dc8/ctrsv_8f.html
Uplo | Specifies whether the matrix is an upper or lower triangular matrix. |
---|---|
TransA | The type of transpose applied to matrix A. |
Diag | Specifies whether or not A is unit triangular. |
A | The input allocation contains matrix A, supported elements type F32_2(RenderScript) . |
X | The input allocation contains vector x, supported elements type F32_2(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
DGBMV performs one of the matrix-vector operations y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y Details: http://www.netlib.org/lapack/explore-html/d2/d3f/dgbmv_8f.html Note: For a M*N matrix, the input Allocation should also be of size M*N (dimY = M, dimX = N), but only the region M*(KL+KU+1) will be referenced. The following subroutine can is an example showing how to convert the original matrix 'a' to row-based band matrix 'b'. for i in range(0, m): for j in range(max(0, i-kl), min(i+ku+1, n)): b[i, j-i+kl] = a[i, j]
TransA | The type of transpose applied to matrix A. |
---|---|
KL | The number of sub-diagonals of the matrix A. |
KU | The number of super-diagonals of the matrix A. |
alpha | The scalar alpha. |
A | The input allocation contains the band matrix A, supported elements type F64(RenderScript) . |
X | The input allocation contains vector x, supported elements type F64(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
beta | The scalar beta. |
Y | The input allocation contains vector y, supported elements type F64(RenderScript) . |
incY | The increment for the elements of vector y, must be larger than zero. |
DGEMM performs one of the matrix-matrix operations C := alpha*op(A)*op(B) + beta*C where op(X) is one of op(X) = X or op(X) = X**T Details: http://www.netlib.org/lapack/explore-html/d7/d2b/dgemm_8f.html
TransA | The type of transpose applied to matrix A. |
---|---|
TransB | The type of transpose applied to matrix B. |
alpha | The scalar alpha. |
A | The input allocation contains matrix A, supported elements type F64(RenderScript) . |
B | The input allocation contains matrix B, supported elements type F64(RenderScript) . |
beta | The scalar beta. |
C | The input allocation contains matrix C, supported elements type F64(RenderScript) .
|
DGEMV performs one of the matrix-vector operations y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y Details: http://www.netlib.org/lapack/explore-html/dc/da8/dgemv_8f.html
TransA | The type of transpose applied to matrix A. |
---|---|
alpha | The scalar alpha. |
A | The input allocation contains matrix A, supported elements type F64(RenderScript) . |
X | The input allocation contains vector x, supported elements type F64(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
beta | The scalar beta. |
Y | The input allocation contains vector y, supported elements type F64(RenderScript) . |
incY | The increment for the elements of vector y, must be larger than zero. |
DGER performs the rank 1 operation A := alpha*x*y**T + A Details: http://www.netlib.org/lapack/explore-html/dc/da8/dger_8f.html
alpha | The scalar alpha. |
---|---|
X | The input allocation contains vector x, supported elements type F64(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
Y | The input allocation contains vector y, supported elements type F64(RenderScript) . |
incY | The increment for the elements of vector y, must be larger than zero. |
A | The input allocation contains matrix A, supported elements type F64(RenderScript) .
|
DSBMV performs the matrix-vector operation y := alpha*A*x + beta*y Details: http://www.netlib.org/lapack/explore-html/d8/d1e/dsbmv_8f.html Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), but only the region N*(K+1) will be referenced. The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'. for i in range(0, n): for j in range(i, min(i+k+1, n)): b[i, j-i] = a[i, j]
Uplo | Specifies whether the upper or lower triangular part of the band matrix A is being supplied. |
---|---|
K | The number of off-diagonals of the matrix A |
alpha | The scalar alpha. |
A | The input allocation contains matrix A, supported elements type F64(RenderScript) . |
X | The input allocation contains vector x, supported elements type F64(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
beta | The scalar beta. |
Y | The input allocation contains vector y, supported elements type F64(RenderScript) . |
incY | The increment for the elements of vector y, must be larger than zero. |
DSPMV performs the matrix-vector operation y := alpha*A*x + beta*y Details: http://www.netlib.org/lapack/explore-html/d4/d85/dspmv_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'. k = 0 for i in range(0, n): for j in range(i, n): b[k++] = a[i, j]
Uplo | Specifies whether the upper or lower triangular part of the matrix A is supplied in packed form. |
---|---|
alpha | The scalar alpha. |
Ap | The input allocation contains matrix A, supported elements type F64(RenderScript) . |
X | The input allocation contains vector x, supported elements type F64(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
beta | The scalar beta. |
Y | The input allocation contains vector y, supported elements type F64(RenderScript) . |
incY | The increment for the elements of vector y, must be larger than zero. |
DSPR performs the rank 1 operation A := alpha*x*x**T + A Details: http://www.netlib.org/lapack/explore-html/dd/dba/dspr_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'. k = 0 for i in range(0, n): for j in range(i, n): b[k++] = a[i, j]
Uplo | Specifies whether the upper or lower triangular part is to be supplied in the packed form. |
---|---|
alpha | The scalar alpha. |
X | The input allocation contains vector x, supported elements type F64(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
Ap | The input allocation contains matrix A, supported elements type F64(RenderScript) .
|
DSPR2 performs the symmetric rank 2 operation A := alpha*x*y**T + alpha*y*x**T + A Details: http://www.netlib.org/lapack/explore-html/dd/d9e/dspr2_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'. k = 0 for i in range(0, n): for j in range(i, n): b[k++] = a[i, j]
Uplo | Specifies whether the upper or lower triangular part is to be supplied in the packed form. |
---|---|
alpha | The scalar alpha. |
X | The input allocation contains vector x, supported elements type F64(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
Y | The input allocation contains vector y, supported elements type F64(RenderScript) . |
incY | The increment for the elements of vector y, must be larger than zero. |
Ap | The input allocation contains matrix A, supported elements type F64(RenderScript) .
|
DSYMM performs one of the matrix-matrix operations C := alpha*A*B + beta*C or C := alpha*B*A + beta*C Details: http://www.netlib.org/lapack/explore-html/d8/db0/dsymm_8f.html
Side | Specifies whether the symmetric matrix A appears on the left or right. |
---|---|
Uplo | Specifies whether the upper or lower triangular part is to be referenced. |
alpha | The scalar alpha. |
A | The input allocation contains matrix A, supported elements type F64(RenderScript) . |
B | The input allocation contains matrix B, supported elements type F64(RenderScript) . |
beta | The scalar beta. |
C | The input allocation contains matrix C, supported elements type F64(RenderScript) .
|
DSYMV performs the matrix-vector operation y := alpha*A*x + beta*y Details: http://www.netlib.org/lapack/explore-html/d8/dbe/dsymv_8f.html
Uplo | Specifies whether the upper or lower triangular part is to be referenced. |
---|---|
alpha | The scalar alpha. |
A | The input allocation contains matrix A, supported elements type F64(RenderScript) . |
X | The input allocation contains vector x, supported elements type F64(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
beta | The scalar beta. |
Y | The input allocation contains vector y, supported elements type F64(RenderScript) . |
incY | The increment for the elements of vector y, must be larger than zero. |
DSYR performs the rank 1 operation A := alpha*x*x**T + A Details: http://www.netlib.org/lapack/explore-html/d3/d60/dsyr_8f.html
Uplo | Specifies whether the upper or lower triangular part is to be referenced. |
---|---|
alpha | The scalar alpha. |
X | The input allocation contains vector x, supported elements type F64(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
A | The input allocation contains matrix A, supported elements type F64(RenderScript) .
|
DSYR2 performs the symmetric rank 2 operation A := alpha*x*y**T + alpha*y*x**T + A Details: http://www.netlib.org/lapack/explore-html/de/d41/dsyr2_8f.html
Uplo | Specifies whether the upper or lower triangular part is to be referenced. |
---|---|
alpha | The scalar alpha. |
X | The input allocation contains vector x, supported elements type F64(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
Y | The input allocation contains vector y, supported elements type F64(RenderScript) . |
incY | The increment for the elements of vector y, must be larger than zero. |
A | The input allocation contains matrix A, supported elements type F64(RenderScript) .
|
DSYR2K performs one of the symmetric rank 2k operations C := alpha*A*B**T + alpha*B*A**T + beta*C or C := alpha*A**T*B + alpha*B**T*A + beta*C Details: http://www.netlib.org/lapack/explore-html/d1/dec/dsyr2k_8f.html
Uplo | Specifies whether the upper or lower triangular part of C is to be referenced. |
---|---|
Trans | The type of transpose applied to the operation. |
alpha | The scalar alpha. |
A | The input allocation contains matrix A, supported elements type F64(RenderScript) . |
B | The input allocation contains matrix B, supported elements type F64(RenderScript) . |
beta | The scalar beta. |
C | The input allocation contains matrix C, supported elements type F64(RenderScript) .
|
DSYRK performs one of the symmetric rank k operations C := alpha*A*A**T + beta*C or C := alpha*A**T*A + beta*C Details: http://www.netlib.org/lapack/explore-html/dc/d05/dsyrk_8f.html
Uplo | Specifies whether the upper or lower triangular part of C is to be referenced. |
---|---|
Trans | The type of transpose applied to the operation. |
alpha | The scalar alpha. |
A | The input allocation contains matrix A, supported elements type F64(RenderScript) . |
beta | The scalar beta. |
C | The input allocation contains matrix C, supported elements type F64(RenderScript) .
|
DTBMV performs one of the matrix-vector operations x := A*x or x := A**T*x Details: http://www.netlib.org/lapack/explore-html/df/d29/dtbmv_8f.html Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), but only the region N*(K+1) will be referenced. The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'. for i in range(0, n): for j in range(i, min(i+k+1, n)): b[i, j-i] = a[i, j]
Uplo | Specifies whether the matrix is an upper or lower triangular matrix. |
---|---|
TransA | The type of transpose applied to matrix A. |
Diag | Specifies whether or not A is unit triangular. |
K | The number of off-diagonals of the matrix A |
A | The input allocation contains matrix A, supported elements type F64(RenderScript) . |
X | The input allocation contains vector x, supported elements type F64(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
DTBSV solves one of the systems of equations A*x = b or A**T*x = b Details: http://www.netlib.org/lapack/explore-html/d4/dcf/dtbsv_8f.html Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), but only the region N*(K+1) will be referenced. The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'. for i in range(0, n): for j in range(i, min(i+k+1, n)): b[i, j-i] = a[i, j]
Uplo | Specifies whether the matrix is an upper or lower triangular matrix. |
---|---|
TransA | The type of transpose applied to matrix A. |
Diag | Specifies whether or not A is unit triangular. |
K | The number of off-diagonals of the matrix A |
A | The input allocation contains matrix A, supported elements type F64(RenderScript) . |
X | The input allocation contains vector x, supported elements type F64(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
DTPMV performs one of the matrix-vector operations x := A*x or x := A**T*x Details: http://www.netlib.org/lapack/explore-html/dc/dcd/dtpmv_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'. k = 0 for i in range(0, n): for j in range(i, n): b[k++] = a[i, j]
Uplo | Specifies whether the matrix is an upper or lower triangular matrix. |
---|---|
TransA | The type of transpose applied to matrix A. |
Diag | Specifies whether or not A is unit triangular. |
Ap | The input allocation contains packed matrix A, supported elements type F64(RenderScript) . |
X | The input allocation contains vector x, supported elements type F64(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
DTPSV solves one of the systems of equations A*x = b or A**T*x = b Details: http://www.netlib.org/lapack/explore-html/d9/d84/dtpsv_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'. k = 0 for i in range(0, n): for j in range(i, n): b[k++] = a[i, j]
Uplo | Specifies whether the matrix is an upper or lower triangular matrix. |
---|---|
TransA | The type of transpose applied to matrix A. |
Diag | Specifies whether or not A is unit triangular. |
Ap | The input allocation contains packed matrix A, supported elements type F64(RenderScript) . |
X | The input allocation contains vector x, supported elements type F64(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
DTRMM performs one of the matrix-matrix operations B := alpha*op(A)*B or B := alpha*B*op(A) op(A) is one of op(A) = A or op(A) = A**T Details: http://www.netlib.org/lapack/explore-html/dd/d19/dtrmm_8f.html
Side | Specifies whether the symmetric matrix A appears on the left or right. |
---|---|
Uplo | Specifies whether matrix A is upper or lower triangular. |
TransA | The type of transpose applied to matrix A. |
Diag | Specifies whether or not A is unit triangular. |
alpha | The scalar alpha. |
A | The input allocation contains matrix A, supported elements type F64(RenderScript) . |
B | The input allocation contains matrix B, supported elements type F64(RenderScript) .
|
DTRMV performs one of the matrix-vector operations x := A*x or x := A**T*x Details: http://www.netlib.org/lapack/explore-html/dc/d7e/dtrmv_8f.html
Uplo | Specifies whether the matrix is an upper or lower triangular matrix. |
---|---|
TransA | The type of transpose applied to matrix A. |
Diag | Specifies whether or not A is unit triangular. |
A | The input allocation contains matrix A, supported elements type F64(RenderScript) . |
X | The input allocation contains vector x, supported elements type F64(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
DTRSM solves one of the matrix equations op(A)*X := alpha*B or X*op(A) := alpha*B op(A) is one of op(A) = A or op(A) = A**T Details: http://www.netlib.org/lapack/explore-html/de/da7/dtrsm_8f.html
Side | Specifies whether the symmetric matrix A appears on the left or right. |
---|---|
Uplo | Specifies whether matrix A is upper or lower triangular. |
TransA | The type of transpose applied to matrix A. |
Diag | Specifies whether or not A is unit triangular. |
alpha | The scalar alpha. |
A | The input allocation contains matrix A, supported elements type F64(RenderScript) . |
B | The input allocation contains matrix B, supported elements type F64(RenderScript) .
|
DTRSV solves one of the systems of equations A*x = b or A**T*x = b Details: http://www.netlib.org/lapack/explore-html/d6/d96/dtrsv_8f.html
Uplo | Specifies whether the matrix is an upper or lower triangular matrix. |
---|---|
TransA | The type of transpose applied to matrix A. |
Diag | Specifies whether or not A is unit triangular. |
A | The input allocation contains matrix A, supported elements type F64(RenderScript) . |
X | The input allocation contains vector x, supported elements type F64(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
SGBMV performs one of the matrix-vector operations y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y Details: http://www.netlib.org/lapack/explore-html/d6/d46/sgbmv_8f.html Note: For a M*N matrix, the input Allocation should also be of size M*N (dimY = M, dimX = N), but only the region M*(KL+KU+1) will be referenced. The following subroutine can is an example showing how to convert the original matrix 'a' to row-based band matrix 'b'. for i in range(0, m): for j in range(max(0, i-kl), min(i+ku+1, n)): b[i, j-i+kl] = a[i, j]
TransA | The type of transpose applied to matrix A. |
---|---|
KL | The number of sub-diagonals of the matrix A. |
KU | The number of super-diagonals of the matrix A. |
alpha | The scalar alpha. |
A | The input allocation contains the band matrix A, supported elements type F32(RenderScript) . |
X | The input allocation contains vector x, supported elements type F32(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
beta | The scalar beta. |
Y | The input allocation contains vector y, supported elements type F32(RenderScript) . |
incY | The increment for the elements of vector y, must be larger than zero. |
SGEMM performs one of the matrix-matrix operations C := alpha*op(A)*op(B) + beta*C where op(X) is one of op(X) = X or op(X) = X**T Details: http://www.netlib.org/lapack/explore-html/d4/de2/sgemm_8f.html
TransA | The type of transpose applied to matrix A. |
---|---|
TransB | The type of transpose applied to matrix B. |
alpha | The scalar alpha. |
A | The input allocation contains matrix A, supported elements type F32(RenderScript) . |
B | The input allocation contains matrix B, supported elements type F32(RenderScript) . |
beta | The scalar beta. |
C | The input allocation contains matrix C, supported elements type F32(RenderScript) .
|
SGEMV performs one of the matrix-vector operations y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y Details: http://www.netlib.org/lapack/explore-html/db/d58/sgemv_8f.html
TransA | The type of transpose applied to matrix A. |
---|---|
alpha | The scalar alpha. |
A | The input allocation contains matrix A, supported elements type F32(RenderScript) . |
X | The input allocation contains vector x, supported elements type F32(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
beta | The scalar beta. |
Y | The input allocation contains vector y, supported elements type F32(RenderScript) . |
incY | The increment for the elements of vector y, must be larger than zero. |
SGER performs the rank 1 operation A := alpha*x*y**T + A Details: http://www.netlib.org/lapack/explore-html/db/d5c/sger_8f.html
alpha | The scalar alpha. |
---|---|
X | The input allocation contains vector x, supported elements type F32(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
Y | The input allocation contains vector y, supported elements type F32(RenderScript) . |
incY | The increment for the elements of vector y, must be larger than zero. |
A | The input allocation contains matrix A, supported elements type F32(RenderScript) .
|
SSBMV performs the matrix-vector operation y := alpha*A*x + beta*y Details: http://www.netlib.org/lapack/explore-html/d3/da1/ssbmv_8f.html Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), but only the region N*(K+1) will be referenced. The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'. for i in range(0, n): for j in range(i, min(i+k+1, n)): b[i, j-i] = a[i, j]
Uplo | Specifies whether the upper or lower triangular part of the band matrix A is being supplied. |
---|---|
K | The number of off-diagonals of the matrix A |
alpha | The scalar alpha. |
A | The input allocation contains matrix A, supported elements type F32(RenderScript) . |
X | The input allocation contains vector x, supported elements type F32(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
beta | The scalar beta. |
Y | The input allocation contains vector y, supported elements type F32(RenderScript) . |
incY | The increment for the elements of vector y, must be larger than zero. |
SSPMV performs the matrix-vector operation y := alpha*A*x + beta*y Details: http://www.netlib.org/lapack/explore-html/d8/d68/sspmv_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'. k = 0 for i in range(0, n): for j in range(i, n): b[k++] = a[i, j]
Uplo | Specifies whether the upper or lower triangular part of the matrix A is supplied in packed form. |
---|---|
alpha | The scalar alpha. |
Ap | The input allocation contains matrix A, supported elements type F32(RenderScript) . |
X | The input allocation contains vector x, supported elements type F32(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
beta | The scalar beta. |
Y | The input allocation contains vector y, supported elements type F32(RenderScript) . |
incY | The increment for the elements of vector y, must be larger than zero. |
SSPR performs the rank 1 operation A := alpha*x*x**T + A Details: http://www.netlib.org/lapack/explore-html/d2/d9b/sspr_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'. k = 0 for i in range(0, n): for j in range(i, n): b[k++] = a[i, j]
Uplo | Specifies whether the upper or lower triangular part is to be supplied in the packed form. |
---|---|
alpha | The scalar alpha. |
X | The input allocation contains vector x, supported elements type F32(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
Ap | The input allocation contains matrix A, supported elements type F32(RenderScript) .
|
SSPR2 performs the symmetric rank 2 operation A := alpha*x*y**T + alpha*y*x**T + A Details: http://www.netlib.org/lapack/explore-html/db/d3e/sspr2_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'. k = 0 for i in range(0, n): for j in range(i, n): b[k++] = a[i, j]
Uplo | Specifies whether the upper or lower triangular part is to be supplied in the packed form. |
---|---|
alpha | The scalar alpha. |
X | The input allocation contains vector x, supported elements type F32(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
Y | The input allocation contains vector y, supported elements type F32(RenderScript) . |
incY | The increment for the elements of vector y, must be larger than zero. |
Ap | The input allocation contains matrix A, supported elements type F32(RenderScript) .
|
SSYMM performs one of the matrix-matrix operations C := alpha*A*B + beta*C or C := alpha*B*A + beta*C Details: http://www.netlib.org/lapack/explore-html/d7/d42/ssymm_8f.html
Side | Specifies whether the symmetric matrix A appears on the left or right. |
---|---|
Uplo | Specifies whether the upper or lower triangular part is to be referenced. |
alpha | The scalar alpha. |
A | The input allocation contains matrix A, supported elements type F32(RenderScript) . |
B | The input allocation contains matrix B, supported elements type F32(RenderScript) . |
beta | The scalar beta. |
C | The input allocation contains matrix C, supported elements type F32(RenderScript) .
|
SSYMV performs the matrix-vector operation y := alpha*A*x + beta*y Details: http://www.netlib.org/lapack/explore-html/d2/d94/ssymv_8f.html
Uplo | Specifies whether the upper or lower triangular part is to be referenced. |
---|---|
alpha | The scalar alpha. |
A | The input allocation contains matrix A, supported elements type F32(RenderScript) . |
X | The input allocation contains vector x, supported elements type F32(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
beta | The scalar beta. |
Y | The input allocation contains vector y, supported elements type F32(RenderScript) . |
incY | The increment for the elements of vector y, must be larger than zero. |
SSYR performs the rank 1 operation A := alpha*x*x**T + A Details: http://www.netlib.org/lapack/explore-html/d6/dac/ssyr_8f.html
Uplo | Specifies whether the upper or lower triangular part is to be referenced. |
---|---|
alpha | The scalar alpha. |
X | The input allocation contains vector x, supported elements type F32(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
A | The input allocation contains matrix A, supported elements type F32(RenderScript) .
|
SSYR2 performs the symmetric rank 2 operation A := alpha*x*y**T + alpha*y*x**T + A Details: http://www.netlib.org/lapack/explore-html/db/d99/ssyr2_8f.html
Uplo | Specifies whether the upper or lower triangular part is to be referenced. |
---|---|
alpha | The scalar alpha. |
X | The input allocation contains vector x, supported elements type F32(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
Y | The input allocation contains vector y, supported elements type F32(RenderScript) . |
incY | The increment for the elements of vector y, must be larger than zero. |
A | The input allocation contains matrix A, supported elements type F32(RenderScript) .
|
SSYR2K performs one of the symmetric rank 2k operations C := alpha*A*B**T + alpha*B*A**T + beta*C or C := alpha*A**T*B + alpha*B**T*A + beta*C Details: http://www.netlib.org/lapack/explore-html/df/d3d/ssyr2k_8f.html
Uplo | Specifies whether the upper or lower triangular part of C is to be referenced. |
---|---|
Trans | The type of transpose applied to the operation. |
alpha | The scalar alpha. |
A | The input allocation contains matrix A, supported elements type F32(RenderScript) . |
B | The input allocation contains matrix B, supported elements type F32(RenderScript) . |
beta | The scalar beta. |
C | The input allocation contains matrix C, supported elements type F32(RenderScript) .
|
SSYRK performs one of the symmetric rank k operations C := alpha*A*A**T + beta*C or C := alpha*A**T*A + beta*C Details: http://www.netlib.org/lapack/explore-html/d0/d40/ssyrk_8f.html
Uplo | Specifies whether the upper or lower triangular part of C is to be referenced. |
---|---|
Trans | The type of transpose applied to the operation. |
alpha | The scalar alpha. |
A | The input allocation contains matrix A, supported elements type F32(RenderScript) . |
beta | The scalar beta. |
C | The input allocation contains matrix C, supported elements type F32(RenderScript) .
|
STBMV performs one of the matrix-vector operations x := A*x or x := A**T*x Details: http://www.netlib.org/lapack/explore-html/d6/d7d/stbmv_8f.html Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), but only the region N*(K+1) will be referenced. The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'. for i in range(0, n): for j in range(i, min(i+k+1, n)): b[i, j-i] = a[i, j]
Uplo | Specifies whether the matrix is an upper or lower triangular matrix. |
---|---|
TransA | The type of transpose applied to matrix A. |
Diag | Specifies whether or not A is unit triangular. |
K | The number of off-diagonals of the matrix A |
A | The input allocation contains matrix A, supported elements type F32(RenderScript) . |
X | The input allocation contains vector x, supported elements type F32(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
STBSV solves one of the systems of equations A*x = b or A**T*x = b Details: http://www.netlib.org/lapack/explore-html/d0/d1f/stbsv_8f.html Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), but only the region N*(K+1) will be referenced. The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'. for i in range(0, n): for j in range(i, min(i+k+1, n)): b[i, j-i] = a[i, j]
Uplo | Specifies whether the matrix is an upper or lower triangular matrix. |
---|---|
TransA | The type of transpose applied to matrix A. |
Diag | Specifies whether or not A is unit triangular. |
K | The number of off-diagonals of the matrix A |
A | The input allocation contains matrix A, supported elements type F32(RenderScript) . |
X | The input allocation contains vector x, supported elements type F32(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
STPMV performs one of the matrix-vector operations x := A*x or x := A**T*x Details: http://www.netlib.org/lapack/explore-html/db/db1/stpmv_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'. k = 0 for i in range(0, n): for j in range(i, n): b[k++] = a[i, j]
Uplo | Specifies whether the matrix is an upper or lower triangular matrix. |
---|---|
TransA | The type of transpose applied to matrix A. |
Diag | Specifies whether or not A is unit triangular. |
Ap | The input allocation contains packed matrix A, supported elements type F32(RenderScript) . |
X | The input allocation contains vector x, supported elements type F32(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
STPSV solves one of the systems of equations A*x = b or A**T*x = b Details: http://www.netlib.org/lapack/explore-html/d0/d7c/stpsv_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'. k = 0 for i in range(0, n): for j in range(i, n): b[k++] = a[i, j]
Uplo | Specifies whether the matrix is an upper or lower triangular matrix. |
---|---|
TransA | The type of transpose applied to matrix A. |
Diag | Specifies whether or not A is unit triangular. |
Ap | The input allocation contains packed matrix A, supported elements type F32(RenderScript) . |
X | The input allocation contains vector x, supported elements type F32(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
STRMM performs one of the matrix-matrix operations B := alpha*op(A)*B or B := alpha*B*op(A) op(A) is one of op(A) = A or op(A) = A**T Details: http://www.netlib.org/lapack/explore-html/df/d01/strmm_8f.html
Side | Specifies whether the symmetric matrix A appears on the left or right. |
---|---|
Uplo | Specifies whether matrix A is upper or lower triangular. |
TransA | The type of transpose applied to matrix A. |
Diag | Specifies whether or not A is unit triangular. |
alpha | The scalar alpha. |
A | The input allocation contains matrix A, supported elements type F32(RenderScript) . |
B | The input allocation contains matrix B, supported elements type F32(RenderScript) .
|
STRMV performs one of the matrix-vector operations x := A*x or x := A**T*x Details: http://www.netlib.org/lapack/explore-html/de/d45/strmv_8f.html
Uplo | Specifies whether the matrix is an upper or lower triangular matrix. |
---|---|
TransA | The type of transpose applied to matrix A. |
Diag | Specifies whether or not A is unit triangular. |
A | The input allocation contains matrix A, supported elements type F32(RenderScript) . |
X | The input allocation contains vector x, supported elements type F32(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
STRSM solves one of the matrix equations op(A)*X := alpha*B or X*op(A) := alpha*B op(A) is one of op(A) = A or op(A) = A**T Details: http://www.netlib.org/lapack/explore-html/d2/d8b/strsm_8f.html
Side | Specifies whether the symmetric matrix A appears on the left or right. |
---|---|
Uplo | Specifies whether matrix A is upper or lower triangular. |
TransA | The type of transpose applied to matrix A. |
Diag | Specifies whether or not A is unit triangular. |
alpha | The scalar alpha. |
A | The input allocation contains matrix A, supported elements type F32(RenderScript) . |
B | The input allocation contains matrix B, supported elements type F32(RenderScript) .
|
STRSV solves one of the systems of equations A*x = b or A**T*x = b Details: http://www.netlib.org/lapack/explore-html/d0/d2a/strsv_8f.html
Uplo | Specifies whether the matrix is an upper or lower triangular matrix. |
---|---|
TransA | The type of transpose applied to matrix A. |
Diag | Specifies whether or not A is unit triangular. |
A | The input allocation contains matrix A, supported elements type F32(RenderScript) . |
X | The input allocation contains vector x, supported elements type F32(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
ZGBMV performs one of the matrix-vector operations y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y or y := alpha*A**H*x + beta*y Details: http://www.netlib.org/lapack/explore-html/d9/d46/zgbmv_8f.html Note: For a M*N matrix, the input Allocation should also be of size M*N (dimY = M, dimX = N), but only the region M*(KL+KU+1) will be referenced. The following subroutine can is an example showing how to convert the original matrix 'a' to row-based band matrix 'b'. for i in range(0, m): for j in range(max(0, i-kl), min(i+ku+1, n)): b[i, j-i+kl] = a[i, j]
TransA | The type of transpose applied to matrix A. |
---|---|
KL | The number of sub-diagonals of the matrix A. |
KU | The number of super-diagonals of the matrix A. |
alpha | The scalar alpha. |
A | The input allocation contains the band matrix A, supported elements type F64_2(RenderScript) . |
X | The input allocation contains vector x, supported elements type F64_2(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
beta | The scalar beta. |
Y | The input allocation contains vector y, supported elements type F64_2(RenderScript) . |
incY | The increment for the elements of vector y, must be larger than zero. |
ZGEMM performs one of the matrix-matrix operations C := alpha*op(A)*op(B) + beta*C where op(X) is one of op(X) = X or op(X) = X**T or op(X) = X**H Details: http://www.netlib.org/lapack/explore-html/d7/d76/zgemm_8f.html
TransA | The type of transpose applied to matrix A. |
---|---|
TransB | The type of transpose applied to matrix B. |
alpha | The scalar alpha. |
A | The input allocation contains matrix A, supported elements type {@link Element#F64_2 |
B | The input allocation contains matrix B, supported elements type {@link Element#F64_2 |
beta | The scalar beta. |
C | The input allocation contains matrix C, supported elements type {@link Element#F64_2 |
ZGEMV performs one of the matrix-vector operations y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y or y := alpha*A**H*x + beta*y Details: http://www.netlib.org/lapack/explore-html/db/d40/zgemv_8f.html
TransA | The type of transpose applied to matrix A. |
---|---|
alpha | The scalar alpha. |
A | The input allocation contains matrix A, supported elements type F64_2(RenderScript) . |
X | The input allocation contains vector x, supported elements type F64_2(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
beta | The scalar beta. |
Y | The input allocation contains vector y, supported elements type F64_2(RenderScript) . |
incY | The increment for the elements of vector y, must be larger than zero. |
ZGERC performs the rank 1 operation A := alpha*x*y**H + A Details: http://www.netlib.org/lapack/explore-html/d3/dad/zgerc_8f.html
alpha | The scalar alpha. |
---|---|
X | The input allocation contains vector x, supported elements type F64_2(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
Y | The input allocation contains vector y, supported elements type F64_2(RenderScript) . |
incY | The increment for the elements of vector y, must be larger than zero. |
A | The input allocation contains matrix A, supported elements type F64_2(RenderScript) .
|
ZGERU performs the rank 1 operation A := alpha*x*y**T + A Details: http://www.netlib.org/lapack/explore-html/d7/d12/zgeru_8f.html
alpha | The scalar alpha. |
---|---|
X | The input allocation contains vector x, supported elements type F64_2(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
Y | The input allocation contains vector y, supported elements type F64_2(RenderScript) . |
incY | The increment for the elements of vector y, must be larger than zero. |
A | The input allocation contains matrix A, supported elements type F64_2(RenderScript) .
|
ZHBMV performs the matrix-vector operation y := alpha*A*x + beta*y Details: http://www.netlib.org/lapack/explore-html/d3/d1a/zhbmv_8f.html Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), but only the region N*(K+1) will be referenced. The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'. for i in range(0, n): for j in range(i, min(i+k+1, n)): b[i, j-i] = a[i, j]
Uplo | Specifies whether the upper or lower triangular part of the band matrix A is being supplied. |
---|---|
K | The number of off-diagonals of the matrix A |
alpha | The scalar alpha. |
A | The input allocation contains matrix A, supported elements type F64_2(RenderScript) . |
X | The input allocation contains vector x, supported elements type F64_2(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
beta | The scalar beta. |
Y | The input allocation contains vector y, supported elements type F64_2(RenderScript) . |
incY | The increment for the elements of vector y, must be larger than zero. |
ZHEMM performs one of the matrix-matrix operations C := alpha*A*B + beta*C or C := alpha*B*A + beta*C Details: http://www.netlib.org/lapack/explore-html/d6/d3e/zhemm_8f.html
Side | Specifies whether the symmetric matrix A appears on the left or right. |
---|---|
Uplo | Specifies whether the upper or lower triangular part is to be referenced. |
alpha | The scalar alpha. |
A | The input allocation contains matrix A, supported elements type F64_2(RenderScript) . |
B | The input allocation contains matrix B, supported elements type F64_2(RenderScript) . |
beta | The scalar beta. |
C | The input allocation contains matrix C, supported elements type F64_2(RenderScript) .
|
ZHEMV performs the matrix-vector operation y := alpha*A*x + beta*y Details: http://www.netlib.org/lapack/explore-html/d0/ddd/zhemv_8f.html
Uplo | Specifies whether the upper or lower triangular part is to be referenced. |
---|---|
alpha | The scalar alpha. |
A | The input allocation contains matrix A, supported elements type F64_2(RenderScript) . |
X | The input allocation contains vector x, supported elements type F64_2(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
beta | The scalar beta. |
Y | The input allocation contains vector y, supported elements type F64_2(RenderScript) . |
incY | The increment for the elements of vector y, must be larger than zero. |
ZHER performs the rank 1 operation A := alpha*x*x**H + A Details: http://www.netlib.org/lapack/explore-html/de/d0e/zher_8f.html
Uplo | Specifies whether the upper or lower triangular part is to be referenced. |
---|---|
alpha | The scalar alpha. |
X | The input allocation contains vector x, supported elements type F64_2(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
A | The input allocation contains matrix A, supported elements type F64_2(RenderScript) .
|
ZHER2 performs the symmetric rank 2 operation A := alpha*x*y**H + alpha*y*x**H + A Details: http://www.netlib.org/lapack/explore-html/da/d8a/zher2_8f.html
Uplo | Specifies whether the upper or lower triangular part is to be referenced. |
---|---|
alpha | The scalar alpha. |
X | The input allocation contains vector x, supported elements type F64_2(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
Y | The input allocation contains vector y, supported elements type F64_2(RenderScript) . |
incY | The increment for the elements of vector y, must be larger than zero. |
A | The input allocation contains matrix A, supported elements type F64_2(RenderScript) .
|
ZHER2K performs one of the hermitian rank 2k operations C := alpha*A*B**H + conjg( alpha )*B*A**H + beta*C or C := alpha*A**H*B + conjg( alpha )*B**H*A + beta*C Details: http://www.netlib.org/lapack/explore-html/d7/dfa/zher2k_8f.html
Uplo | Specifies whether the upper or lower triangular part of C is to be referenced. |
---|---|
Trans | The type of transpose applied to the operation. |
alpha | The scalar alpha. |
A | The input allocation contains matrix A, supported elements type F64_2(RenderScript) . |
B | The input allocation contains matrix B, supported elements type F64_2(RenderScript) . |
beta | The scalar beta. |
C | The input allocation contains matrix C, supported elements type F64_2(RenderScript) .
|
ZHERK performs one of the hermitian rank k operations C := alpha*A*A**H + beta*C or C := alpha*A**H*A + beta*C Details: http://www.netlib.org/lapack/explore-html/d1/db1/zherk_8f.html
Uplo | Specifies whether the upper or lower triangular part of C is to be referenced. |
---|---|
Trans | The type of transpose applied to the operation. |
alpha | The scalar alpha. |
A | The input allocation contains matrix A, supported elements type F64_2(RenderScript) . |
beta | The scalar beta. |
C | The input allocation contains matrix C, supported elements type F64_2(RenderScript) .
|
ZHPMV performs the matrix-vector operation y := alpha*A*x + beta*y Details: http://www.netlib.org/lapack/explore-html/d0/d60/zhpmv_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'. k = 0 for i in range(0, n): for j in range(i, n): b[k++] = a[i, j]
Uplo | Specifies whether the upper or lower triangular part of the matrix A is supplied in packed form. |
---|---|
alpha | The scalar alpha. |
Ap | The input allocation contains matrix A, supported elements type F64_2(RenderScript) . |
X | The input allocation contains vector x, supported elements type F64_2(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
beta | The scalar beta. |
Y | The input allocation contains vector y, supported elements type F64_2(RenderScript) . |
incY | The increment for the elements of vector y, must be larger than zero. |
ZHPR performs the rank 1 operation A := alpha*x*x**H + A Details: http://www.netlib.org/lapack/explore-html/de/de1/zhpr_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'. k = 0 for i in range(0, n): for j in range(i, n): b[k++] = a[i, j]
Uplo | Specifies whether the upper or lower triangular part is to be supplied in the packed form. |
---|---|
alpha | The scalar alpha. |
X | The input allocation contains vector x, supported elements type F64_2(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
Ap | The input allocation contains matrix A, supported elements type F64_2(RenderScript) .
|
ZHPR2 performs the symmetric rank 2 operation A := alpha*x*y**H + alpha*y*x**H + A Details: http://www.netlib.org/lapack/explore-html/d5/d52/zhpr2_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'. k = 0 for i in range(0, n): for j in range(i, n): b[k++] = a[i, j]
Uplo | Specifies whether the upper or lower triangular part is to be supplied in the packed form. |
---|---|
alpha | The scalar alpha. |
X | The input allocation contains vector x, supported elements type F64_2(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
Y | The input allocation contains vector y, supported elements type F64_2(RenderScript) . |
incY | The increment for the elements of vector y, must be larger than zero. |
Ap | The input allocation contains matrix A, supported elements type F64_2(RenderScript) .
|
ZSYMM performs one of the matrix-matrix operations C := alpha*A*B + beta*C or C := alpha*B*A + beta*C Details: http://www.netlib.org/lapack/explore-html/df/d51/zsymm_8f.html
Side | Specifies whether the symmetric matrix A appears on the left or right. |
---|---|
Uplo | Specifies whether the upper or lower triangular part is to be referenced. |
alpha | The scalar alpha. |
A | The input allocation contains matrix A, supported elements type F64_2(RenderScript) . |
B | The input allocation contains matrix B, supported elements type F64_2(RenderScript) . |
beta | The scalar beta. |
C | The input allocation contains matrix C, supported elements type F64_2(RenderScript) .
|
ZSYR2K performs one of the symmetric rank 2k operations C := alpha*A*B**T + alpha*B*A**T + beta*C or C := alpha*A**T*B + alpha*B**T*A + beta*C Details: http://www.netlib.org/lapack/explore-html/df/d20/zsyr2k_8f.html
Uplo | Specifies whether the upper or lower triangular part of C is to be referenced. |
---|---|
Trans | The type of transpose applied to the operation. |
alpha | The scalar alpha. |
A | The input allocation contains matrix A, supported elements type F64_2(RenderScript) . |
B | The input allocation contains matrix B, supported elements type F64_2(RenderScript) . |
beta | The scalar beta. |
C | The input allocation contains matrix C, supported elements type F64_2(RenderScript) .
|
ZSYRK performs one of the symmetric rank k operations C := alpha*A*A**T + beta*C or C := alpha*A**T*A + beta*C Details: http://www.netlib.org/lapack/explore-html/de/d54/zsyrk_8f.html
Uplo | Specifies whether the upper or lower triangular part of C is to be referenced. |
---|---|
Trans | The type of transpose applied to the operation. |
alpha | The scalar alpha. |
A | The input allocation contains matrix A, supported elements type F64_2(RenderScript) . |
beta | The scalar beta. |
C | The input allocation contains matrix C, supported elements type F64_2(RenderScript) .
|
ZTBMV performs one of the matrix-vector operations x := A*x or x := A**T*x or x := A**H*x Details: http://www.netlib.org/lapack/explore-html/d3/d39/ztbmv_8f.html Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), but only the region N*(K+1) will be referenced. The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'. for i in range(0, n): for j in range(i, min(i+k+1, n)): b[i, j-i] = a[i, j]
Uplo | Specifies whether the matrix is an upper or lower triangular matrix. |
---|---|
TransA | The type of transpose applied to matrix A. |
Diag | Specifies whether or not A is unit triangular. |
K | The number of off-diagonals of the matrix A |
A | The input allocation contains matrix A, supported elements type F64_2(RenderScript) . |
X | The input allocation contains vector x, supported elements type F64_2(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
ZTBSV solves one of the systems of equations A*x = b or A**T*x = b or A**H*x = b Details: http://www.netlib.org/lapack/explore-html/d4/d5a/ztbsv_8f.html Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), but only the region N*(K+1) will be referenced. The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'. for i in range(0, n): for j in range(i, min(i+k+1, n)): b[i, j-i] = a[i, j]
Uplo | Specifies whether the matrix is an upper or lower triangular matrix. |
---|---|
TransA | The type of transpose applied to matrix A. |
Diag | Specifies whether or not A is unit triangular. |
K | The number of off-diagonals of the matrix A |
A | The input allocation contains matrix A, supported elements type F64_2(RenderScript) . |
X | The input allocation contains vector x, supported elements type F64_2(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
ZTPMV performs one of the matrix-vector operations x := A*x or x := A**T*x or x := A**H*x Details: http://www.netlib.org/lapack/explore-html/d2/d9e/ztpmv_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'. k = 0 for i in range(0, n): for j in range(i, n): b[k++] = a[i, j]
Uplo | Specifies whether the matrix is an upper or lower triangular matrix. |
---|---|
TransA | The type of transpose applied to matrix A. |
Diag | Specifies whether or not A is unit triangular. |
Ap | The input allocation contains packed matrix A, supported elements type F64_2(RenderScript) . |
X | The input allocation contains vector x, supported elements type F64_2(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
ZTPSV solves one of the systems of equations A*x = b or A**T*x = b or A**H*x = b Details: http://www.netlib.org/lapack/explore-html/da/d57/ztpsv_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'. k = 0 for i in range(0, n): for j in range(i, n): b[k++] = a[i, j]
Uplo | Specifies whether the matrix is an upper or lower triangular matrix. |
---|---|
TransA | The type of transpose applied to matrix A. |
Diag | Specifies whether or not A is unit triangular. |
Ap | The input allocation contains packed matrix A, supported elements type F64_2(RenderScript) . |
X | The input allocation contains vector x, supported elements type F64_2(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
ZTRMM performs one of the matrix-matrix operations B := alpha*op(A)*B or B := alpha*B*op(A) op(A) is one of op(A) = A or op(A) = A**T or op(A) = A**H Details: http://www.netlib.org/lapack/explore-html/d8/de1/ztrmm_8f.html
Side | Specifies whether the symmetric matrix A appears on the left or right. |
---|---|
Uplo | Specifies whether matrix A is upper or lower triangular. |
TransA | The type of transpose applied to matrix A. |
Diag | Specifies whether or not A is unit triangular. |
alpha | The scalar alpha. |
A | The input allocation contains matrix A, supported elements type F64_2(RenderScript) . |
B | The input allocation contains matrix B, supported elements type F64_2(RenderScript) .
|
ZTRMV performs one of the matrix-vector operations x := A*x or x := A**T*x or x := A**H*x Details: http://www.netlib.org/lapack/explore-html/d0/dd1/ztrmv_8f.html
Uplo | Specifies whether the matrix is an upper or lower triangular matrix. |
---|---|
TransA | The type of transpose applied to matrix A. |
Diag | Specifies whether or not A is unit triangular. |
A | The input allocation contains matrix A, supported elements type F64_2(RenderScript) . |
X | The input allocation contains vector x, supported elements type F64_2(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
ZTRSM solves one of the matrix equations op(A)*X := alpha*B or X*op(A) := alpha*B op(A) is one of op(A) = A or op(A) = A**T or op(A) = A**H Details: http://www.netlib.org/lapack/explore-html/d1/d39/ztrsm_8f.html
Side | Specifies whether the symmetric matrix A appears on the left or right. |
---|---|
Uplo | Specifies whether matrix A is upper or lower triangular. |
TransA | The type of transpose applied to matrix A. |
Diag | Specifies whether or not A is unit triangular. |
alpha | The scalar alpha. |
A | The input allocation contains matrix A, supported elements type F64_2(RenderScript) . |
B | The input allocation contains matrix B, supported elements type F64_2(RenderScript) .
|
ZTRSV solves one of the systems of equations A*x = b or A**T*x = b or A**H*x = b Details: http://www.netlib.org/lapack/explore-html/d1/d2f/ztrsv_8f.html
Uplo | Specifies whether the matrix is an upper or lower triangular matrix. |
---|---|
TransA | The type of transpose applied to matrix A. |
Diag | Specifies whether or not A is unit triangular. |
A | The input allocation contains matrix A, supported elements type F64_2(RenderScript) . |
X | The input allocation contains vector x, supported elements type F64_2(RenderScript) . |
incX | The increment for the elements of vector x, must be larger than zero. |
Create an intrinsic to access BLAS subroutines.
rs | The RenderScript context |
---|